Foro de preguntas y respuestas de Matemáticas

logo beUnicoos
Los foros de unicoos se han unificado en nuestra nueva plataforma beUnicoos. Para dejar nuevas preguntas deberás hacerlo allí, donde además podrás encontrar nuevas asignaturas y herramientas para ayudarte más con tus estudios.

  • icon

    Martina Mejía
    el 26/12/18

    Hola muy buenas;

    Dados los Vectores no nulos ⁄α+b⁄=/a-b/, halle el valor de a*b 

    me podrían explicar para poder resolver este ejercicio, por favor 


    replythumb_up0 voto/sflag
    icon

    César
    el 26/12/18



    thumb_up0 voto/sflag
    icon

    Martina Mejía
    el 26/12/18

    hola me podías explicar la razón por la cual estás elevandola al cuadrado


    thumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 26/12/18

    Recuerda que el producto escalar es conmutativo.

    Recuerda la propiedad:

    |u|2 = u•u (1).

    Luego, puedes plantear:

    |a+b|2 = (a+b)•(a+b) = distribuyes:

    = a•a + a•b + b•a + b•b = aplicas la propiedad conmutativa y la propiedad señalada (1):

    = |a|2a•b + a•b + |b|2 = reduces términos semejantes y ordenas términos:

    |a|2 + |b|2 + 2*(a•b) (2).

    Luego, puedes plantear:

    |a-b|2 = (a-b)•(a-b) = distribuyes:

    = a•a - a•b - b•a + b•b = aplicas la propiedad conmutativa y la propiedad señalada (1):

    = |a|2 - a•b - a•b + |b|2 = reduces términos semejantes y ordenas términos:

    |a|2 + |b|2 - 2*(a•b) (3).

    Luego, tienes la ecuación vectorial de tu enunciado:

    |a+b| = |a-b|,

    elevas al cuadrado en ambos miembros, y queda:

    |a+b|2 = |a-b|2,

    sustituyes las expresiones señaladas (2) (3), y queda:

    |a|2 + |b|2 + 2*(a•b) = |a|2 + |b|2 - 2*(a•b),

    restas |a|2, restas |b|2, y sumas 2*(a•b) en ambos miembros, y queda:

    4*(a•b) = 0,

    divides por 4 en ambos miembros, y queda:

    a•b = 0.

    Espero haberte ayudado.

    thumb_up1 voto/sflag
  • icon

    Salvi Moji
    el 26/12/18


    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 26/12/18

    Tienes un círculo cuyo radio mide: 1/2 + 1/2 = 1 = R.

    Tienes un triángulo rectángulo cuya base mide: b = 1/2,

    y cuya hipotenusa coincide con un radio del círculo, por lo que mide 1.

    Luego, puedes llamar h a la altura del triángulo rectángulo, aplicas el Teorema de Pitágoras, y queda la ecuación:

    h2 + b2 = R2, restas b2 en ambos miembros, y queda:

    h2 = R2 - b2, extraes raíz cuadrada positiva en ambos miembros, y queda:

    h = √(R2 - b2),

    que es la expresión de la longitud de la altura del triángulo rectángulo en función de la longitud de su base y del radio del círculo;

    luego, reemplazas valores en la expresión remarcada, y queda:

    h = √( 12 - (1/2)2 ), resuelves potencias, y queda:

    h = √(1 - 1/4), resuelves el argumento de la raíz, y queda:

    h = √(3/4), distribuyes la raíz entre el numerador y el denominador de su argumento, resuelves, y queda:

    h = √(3)/2, que es el valor de la altura del triángulo rectángulo.

    Luego, planteas la expresión del área del triángulo rectángulo en función de las longitudes de su base y de su altura, y queda:

    A = (1/2)*b*h, reemplazas valores, y queda:

    A = (1/2)*(1/2)*√(3)/2,

    reduces factores racionales, y queda:

    A = √(3)/8.

    Espero haberte ayudado.

    thumb_up1 voto/sflag
  • icon

    Moisés Castro
    el 26/12/18

    saben hacer el apartado d y e

    replythumb_up0 voto/sflag
    icon

    César
    el 26/12/18


    thumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 26/12/18


    thumb_up0 voto/sflag
  • icon

    YOLANDA FERNÁNDEZ TENA
    el 26/12/18

    Hola me gustaría que me ayudaran a resolver este ejercicio que me ha caído en un examen y no he sabido resolverlo aunque sí se racionalizar no se qué hacer con éste tipo de denominador.Gracias.

    38÷ (√2√5  -1)

    nota: la raiz de dos incluye hasta el menos uno




    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 16/1/19

    Sube foto del enunciado original, por favor.

    thumb_up0 voto/sflag
  • icon

    Fernando Quintanilla
    el 26/12/18

    Por favor, ¿cómo resolver este ejercicio?


    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 26/12/18

    g) 

    thumb_up1 voto/sflag
    icon

    Antonius Benedictus
    el 26/12/18


    thumb_up1 voto/sflag
  • icon

    Juan
    el 26/12/18

    Una ayudadita en la a y d por favor :3


    replythumb_up0 voto/sflag
    icon

    César
    el 26/12/18


    thumb_up1 voto/sflag
  • icon

    Juan
    el 26/12/18

    Hola, me pueden ayudar por favor?


    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 26/12/18


    thumb_up0 voto/sflag
  • icon

    sergio
    el 26/12/18

    hola necesito si alguien puede ayudarme con estos ejercicios de (algebra).

    Exprese si cada una de estas ecuaciones es verdadera o falsa:

    1)    (p+q)=p+q

    2)    √a∧2+b∧2=a+b

    3)    1/x-y=1/x-1/y

    4)    √a•b=√a •√b

    5)    1+t•c/c= 1+t

    6)     (1/x)/a/x-b/x= 1/a-b

    el 4 y el 6 son verdaderas y el resto falso, si lo evaluo con valores cualquiera pero no entiendo de que forma responder si numericamente o con variables?? y en todo caso como lo haria solo usando variables

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 26/12/18

    Para demostrar una Falsedad basta con dar un "contraejemplo", pero para demostrar Veracidad debes hacerlo en forma general.


    thumb_up1 voto/sflag
  • icon

    Alex Ramirez
    el 25/12/18
    flag

    Muy buenas, ayuda con este ejercicio por favor, en el planteamiento me queda una integral demasiada larga de resolver:

    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 26/12/18

    ¡Hola! Nos encantaría ayudarte, pero no solemos responder dudas universitarias que no tengan que ver específicamente con los vídeos que David Calle ha grabado como excepción. O de otras asignaturas que no sean Matemáticas, Física y Química. Lo sentimos de corazón… Esperamos que  lo entiendas.

    Ojalá algún unicoo universitario se anime a ayudarte (de hecho, lo ideal es que todos los universitarios intentarais ayudaros los unos a los otros).

    thumb_up0 voto/sflag
  • icon

    Mariano Cornejo
    el 25/12/18

    Tenés toda la razón César, me equivoqué, ahora que me acuerdo es y=log( x+9 ) - 1

    Espero que esta vez no me haiga equivocado, muchas gracias y feliz navidad.

    replythumb_up0 voto/sflag
    icon

    César
    el 25/12/18


    thumb_up0 voto/sflag