Foro de preguntas y respuestas de Matemáticas

logo beUnicoos
Los foros de unicoos se han unificado en nuestra nueva plataforma beUnicoos. Para dejar nuevas preguntas deberás hacerlo allí, donde además podrás encontrar nuevas asignaturas y herramientas para ayudarte más con tus estudios.

  • icon

    Bryam L Maldonado
    el 19/7/17

    Me podrian ayudar con este ejercicio porfa



    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 19/7/17


    thumb_up1 voto/sflag
  • icon

    Felipe
    el 19/7/17

    Hola , buenas , me podrían ayudar a resolver 3 ejercicios porfavor , son de álgebra lineal , tengo dudas con el 1 respecto a la base , el 4 respecto a la imagen de la transformación , y el 5 el planteamiento , no me interesa que estén desarrollados los ejercicios , pero ojala una orientación para poder desarrollarlos , muchas gracias!




    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 19/7/17





    thumb_up2 voto/sflag
  • icon

    De
    el 19/7/17

    Hola, disculpen alguien me podría ayudar con este ejercicio porfavor.

    El problema 2


    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 20/7/17

    Observa que la curva es una circunferencia, cuya ecuación canónica es: (x - 1)2 + (y + 1)2 = 25;

    luego reemplazas x = 4 y queda: 9 + (y + 1)2 = 25, de donde despejas: 

    y = - 5, que corresponde al punto de contacto: A(4,-5),

    y = 3, que corresponde al punto de contacto: B(4,3).

    Luego, puedes derivar implícitamente con respecto a x y queda:

    2*(x - 1) + 2*(y + 1)*y ' = 0, divides por 2 en todos los términos de la ecuación y queda:

    (x - 1) + (y + 1)*y ' = 0 (1).

    Luego, reemplaza las coordenadas de cada punto de contacto en la ecuación señalada (1), a fin de obtener la pendiente de la recta tangente correspondiente:

    a) para el punto A tienes:

    (4 - 1) + (- 5 + 1)*y ' = 0, de donde despejas: y ' = 3/4 = mA,

    y la ecuación de la recta tangente queda.

    y - (- 5) = (3/4)*(x - 4), de donde puedes despejar:

    y = (3/4)*x - 8, que es la ecuación cartesiana explícita de la recta tangente a la curva, que pasa por el punto A;

    b) para el punto B tienes:

    (4 - 1) + (3 + 1)*y ' = 0, de donde despejas: y ' = - 3/4 = mB,

    y la ecuación de la recta tangente queda.

    y - 3 = - (3/4)*(x - 4), de donde puedes despejar:

    y = - (3/4)*x + 6, que es la ecuación cartesiana explícita de la recta tangente a la curva, que pasa por el punto B.

    Te dejo los gráficos, que puedes trazar a partir de las tres ecuaciones remarcadas.

    Espero haberte ayudado.

    thumb_up0 voto/sflag
  • icon

    Mara
    el 19/7/17

    Hola, buenas, me pueden ayudar con el 5B y 7AB (si quieren hacer alguno mas mejor jaja).

    Muchas gracias!


    replythumb_up0 voto/sflag
    icon

    Guillem De La Calle Vicente
    el 20/7/17


    thumb_up0 voto/sflag
    icon

    Guillem De La Calle Vicente
    el 20/7/17


    thumb_up1 voto/sflag
    icon

    Guillem De La Calle Vicente
    el 20/7/17


    thumb_up1 voto/sflag
  • icon

    Juan
    el 19/7/17
    flag

    como podria resolverla ya que no tengo con quien comparar estos resultados de transformaciones lineales

    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 19/7/17

    Revisa las operaciones. Ya puedes arrancar.


    thumb_up1 voto/sflag
  • icon

    Guillem De La Calle Vicente
    el 19/7/17

    Resuelva las inecuaciones dadas, expresando la solución como un intervalo o unión de intervalos.

    (a) -2x>4

    (b) 3x+5≤8

    (c) 5x-3≤7-3x

    (d) (6-x)/(4)≥(3x-4)/(2)

    replythumb_up0 voto/sflag
    icon

    Ángel
    el 19/7/17

    (a) -2x>4 --------> 2x<-4 -------> x<-2  ------>   (-inf,-2)

    (b) 3x+5≤8 ------>  3x≤3 ------> x≤1 ----->    (-inf,1]

    (c) 5x-3≤7-3x  ------->  8x≤10 ----->  x≤5/4 ------>  (-inf,5/4]

    (d) (6-x)/(4)≥(3x-4)/(2)  ---------->  6-x≥6x-8  -------->   14-x≥6x  ------>   14≥7x  ------------>  2≥x  ----->  x≤2  -------->  (-inf,2]

    thumb_up0 voto/sflag

    Usuario eliminado
    el 19/7/17
    flag

    Oye Guillem, no es por ofender ni nada parecido pero, tu nivel de Matemáticas no son de estos ejercicios.

    thumb_up0 voto/sflag

    Usuario eliminado
    el 19/7/17
    flag

    ¿Qué pasa?

    thumb_up0 voto/sflag
    icon

    Guillem De La Calle Vicente
    el 19/7/17

    jejeje. Era para ver como se escriben bien estos ejercicios de inecuaciones, porque muchas veces cuando resuelvo dudas de esto, no se como escribirlo bien formalmente.

    thumb_up1 voto/sflag
  • icon

    Beatriz Garrido (Bea)
    el 19/7/17

    Hola necesito ayuda con el apartado a y c de este ejercicio.


    replythumb_up0 voto/sflag
    icon

    César
    el 19/7/17

    No se si lo interpreto bien pero alla va  

    thumb_up1 voto/sflag
    icon

    Guillem De La Calle Vicente
    el 19/7/17


    thumb_up2 voto/sflag
  • icon

    Laura
    el 19/7/17

    Hola a todos me trabe con el ejercicio e, me ayudarían?  Gracias 

    replythumb_up0 voto/sflag
    icon

    César
    el 19/7/17

    Teorema de Rouche

    intenta alguno Laura

    thumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 19/7/17

    La resolución por Gauss te va de propina:


    thumb_up2 voto/sflag
  • icon

    Mara
    el 19/7/17

    Como se supone que se consigue el + 1 de la solución? Y por qué x es positivo? No sería -x+1 (en la solución)??? 

    Además, me podeis decir que tipo de operación es esta? Me refiero al nombre de esto, para poder buscar videos sobre ello, porque me entra en un examen y no sé hacerlo muy bien.

    Gracias!


    Esto es la solucion que me han dado de este problema (el numero 4b)

    , pero no loentiendo del todo.

    replythumb_up0 voto/sflag

    Usuario eliminado
    el 19/7/17

    a) -x-1 = -(x+1)

    b) Inversa de una función, unicoos.

    thumb_up0 voto/sflag

    Usuario eliminado
    el 19/7/17

    Función compuesta, unicoos.

    thumb_up0 voto/sflag
  • icon

    Guillem De La Calle Vicente
    el 19/7/17

    Obtenga el conjunto de todos los números reales x que satisfacen la condición dada, expresándolos como un intervalo o unión de intervalos.

    (a) x≤-1

    (b) x>-2

    (c) x<4       o       x≥2

    replythumb_up0 voto/sflag
    icon

    Ángel
    el 19/7/17

    (a) ]- ∞,-1]

    (b) ]-2,∞[

    (c) ]-∞,∞[ = 

    thumb_up0 voto/sflag
    icon

    Guillem De La Calle Vicente
    el 19/7/17

    Correcto.

    thumb_up0 voto/sflag