Tengo que resolver este problema, pero no se como plantear el sistema de equaciones.¿ Me podriais ayudar? MUCHAS GRACIAS!!!
- Gemma ha orado dinero para las rebajas i compra unos zapatos y un libro que lee hace falta. Primero se gasta en los zapatos la mitat de lo que tenia mas 3 euros, y el libro le cuesta la tercera parte de lo que tenia. Finalmente, le sobran 26 euros. Cuanto dinero se a llevado Gemma a las rebajas?
Hola Lluna, a ver si te podemos ayudar.
Digamos que lo que tenías es "x"
Por lo tengo, lo que gasta en los zapatos es x/2+3.
Y lo qeu se gasta en el libro es x/3.
Por lo tanto tenemos x-(x/2+3+x/3)=26 € que le sobran.
mcm(2,3)=6;
6x/6-(3x/6+18/6+2x/6)=138/6
Quitamos el denominador común (simplificamos)
6x-(3x+18+2x)=138
6x-3x-18-2x=138
6x-3x-2x=138+18
x=156€
¿cómo se puede comprobar esta igualdad?
(sen α - sen β)/(cos β - sen α)=√3 si (α + β) =60grados
Hola, me llamo Marc i mi pregunta es, si tengo que comenzar en la universidad y hace 20 años que no hago mates ni física, por donde me recomendarias comenzar.
Hola, necesito ayuda con este limite: limx→0(Sen(x)√(1-cos(x)))/xSen(2x)
El sen(x)/x seria un limite notable y me quedaria solo limx→0√(1-cos(x))/Sen(2x) el cual podria multiplicar y dividir por 2x para que me quede un limite notable y luego tendria limx→0 (√(1-cos(x))/2x)2 elevado al cuadrado. Pero mi duda es: ¿Se podria elevar al cuadrado?
Mi profesora del instituto me ha puesto unos problemas de matematicas de equaciones i inecuaciones lo mas gracioso es que no ha explicado como se resuelven los problemas de equaciones o inecuaciones. Me prodias explicar algun problema para que supiese hacer algunos. MUCHAS GRACIAS!!!!!
Buenas tardes, podría ayudarme alguien con un problema en el que se me he estancado?
El problema es de vectores y dice lo siguiente:
Calcula la ecuación de la recta t perpendicular al plano formado por las rectas r: x=0 , y=2z y la recta s: x+y+z=0, 2x+y=0 y tal que la distancia de r a t sea igual a la distancia de s a t e igual a raíz de105.
Yo de momento he conseguido el plano formado por r y s que es: 4x+y-2z=0 por tanto ya se que como la recta tiene que ser perpendicular a dicho plano el vector normal del plano es el vector de mi recta t, pero no se como hallar un punto de la recta. He intentado por la formulas de distancia entre dos rectas d(r,t)=d(s,t)=raíz 105, pero me lío y no saco nada.
Muchas gracias de antemano.
Hola,
Sabemos que un determinado polinomio de grado 3 (f(x)=ax^3+bx^2+cx+d) tiene por recta tangente en x=0 la recta y=9x+1. Que tiene u máximo en x=1, y un punto de inflexión en x=2. Identificar el polinomio en cuestión.
Hola buenas tardes,
para resolver este problema debes tener claro el significado de las derivadas de una función f(x). La primera derivada nos informa del crecimiento y decrecimiento de la función (cuando f'(x)=0 hay un máximo, cuando f'(x)>0 crece, cuando f'(x)<0 decrece). La segunda derivada nos da información sobre la curvatura de la función (f''(x)=0 tenemos un punto de inflexión). Además, te añade una condición con la recta tangente.
Tiene un máximo en x=1 ---> f'(1)=0 ---> 3a + 2b + c = 0
Tiene un punto de inflexión en x=2 ---> f''(2) = 0 ---> 12a + 2b = 0
Tiene por recta tangente en x=0 la recta y=9x+1 ---> f'(0) = 9 ---> c = 9
Pasa por el punto x=0 ---> f(0) = y(0) ---> d = 1
Así pues, tienes un sistema de ecuación que te permite determinar los parámetros a, b y c.
Solución = x3 - 6x2 + 9x + 1
Saludos,
Roger Monreal