1. me podrían resolver este ejercicio? gracias A)log(base x) 81=2 B) log(base3) x=2 C) log(base 3) de (x elevado a 5)=2 D) log(base 2) de(1/32)=x
A)
A)
Puedes plantear para el área total de la figura:
x*y = 465 m2;aquí haces pasaje de factor como divisor, y queda:
y = 465/x (1), y observa que x debe tomar valores estrictamente positivos.
B)
Observa que tienes dos paredes exteriores cuya longitud es x, otras dos cuya longitud es y, y una pared interior cuya longitud es x, por lo que puedes plantear para el coste total:
C(x,y) = 1500*2x + 1500*2y + 1000*x, resuelves términos, y queda:
C(x,y) = 3000*x + 3000*y + 1000*x, reduces términos semejantes, y queda:
C(x,y) = 4000*x + 3000*y;
luego sustituyes la expresión señalada (1) y la expresión del coste en función de la longitud de la base del rectángulo queda:
C(x) =4000*x + 3000*465/x, resuelves coeficientes en el segundo término, y queda:
C(x) = 4000*x + 1395000/x.
C)
Plantea la expresión de la función derivada:
C ' (x) = 4000 - 1395000/x2;
luego, plantea la condición de punto crítico (posible máximo o posible mínimo):
C ' (x) = 0, sustituyes la expresión en el primer miembro, y queda:
4000 - 1395000/x2 = 0, divides por 1000 en todos los términos de la ecuación, y queda:
4 - 1395/x2 = 0, haces pasaje de término, y queda:
4 = 1395/x2, haces pasaje de divisor como factor, y de factor como divisor, y queda:
x2 = 1395/4, haces pasaje de potencia como raíz, y queda (observa que elegimos la solución positiva):
x ≅ 18,675 m;
luego, reemplazas en la ecuación señalada (1), y queda:
y ≅ 24,900 m;
luego reemplazas en la expresión del coste, y el valor del coste mínimo queda:
Cm = 149398,795 euros.
Espero haberte ayudado.
Se trata de que DESPUES DE IR A CLASE (ver los vídeos relacionados con
vuestras dudas) enviéis dudas concretas, muy concretas. Y que nos enviéis
también todo aquello que hayais conseguido hacer por vosotros mismos. Paso a
paso, esté bien o mal. No solo el enunciado. De esa manera podremos saber vuestro
nivel, en que podemos ayudaros, cuales son vuestros fallos.... Y el trabajo
duro será el vuestro. Nos cuentas ¿ok? #nosvemosenclase ;-)
Hola compañeros quizá esto sonará muy a preescolar, pero me podrán ayudar con este sistema de ecuaciones por Gauss-Jordan?
2x1+2x2-x3+x5=0
-x1-x2+2x3-3x4+x5=0
x1+x2-2x3-x5=0
x3+x4+x5=0
Buenas tardes si me pueden ayudar en cómo resolverla, y gracias desde ya porque no entiendo bien.
32x = 9x
9x/2 =3x
Como se han demostrado las igualdades o ecuaciones, los dos enunciados son verdaderos
Claro que se puede resolver como una ecuación, es lo que hemos hecho...
No sé si te refieres a esto:
1. Como 32x = (32)x y (32)x = 9x entonces 32x = 9x
2. Como 9x/2 = (32)x/2 y (32)x/2 =32*(x/2) y 3(2x)/2 =3x entonces 9x/2 = 3x
También serían razonamientos o ecuaciones válid@s, son diferentes maneras de expresar lo mismo.